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ABSTRACT

• Robust methods provide a fresh approach to the treatment of outliers

or wild observations in filtering and smoothing applications. The robust

14-estimates of regression are extended to filtering and fixed lag smoothing

by employing a pseudo density Of the observations In the derivations of the

filter and fixed lag smoother. These robust methods are applied to track-

ing data to obtain improved estimation performance in the presence of wild

observations. The improvement in estimation performance Is evaluated via

Monte Carlo using simulated tracking data.
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I. INTRODUCTION

Robust filtering and smoothing are a natural extension of the robust
M-estimates of regression which have been developed by Huber [1]. The 14-estimates
of regression have been designed to perform wel l when the observations are con-
taminated by outliers. The conventional estimation techniques of least squares,
minimum variance, maximum likelihood, etc. v~ay become useless when the observations
are contaminated by outliers. The robust 14-estimates have been extremely successful
in dealing with outliers in other data reduction problems, [2]. Outliers or wild
data also present a problem when they occur in the observation sequence of a filter
or smoother. These outliers have often been treated by testing the filter or smoother
residuals. If the residual is too large as compared with some measure of dispersion
of the residuals, the corresponding observation was rejected as being an outlier.
Otherwise, the observation is processed normally by the filter or smoother. This
procedure was often successful if only a small number of outliers were present but
may breakdown when a larger proportion of outliers were present in the observation
sequence. Also, in order for such an outlier detection method to be successful, a
robust measure of dispersion of the filter or smoother residuals was necessary.
These old methods of treating outliers in filters or smoother observations were
added to the filter or smoother process as an afterthought. In contrast to this
the development of robust filtering and smoothing methods by the use of M-estimates
provides a method of treating outlying observations which is inherent in the filter
or smoother equations.

Very little development has appeared on the application of robust estimation
to filtering and smoothing. The most significant effort known to the author is
the paper of Masrellez and Martin, (3]. Their development on the appl ication of
M—estjmetes to the Kalman filter fs mainly theoretical. The emphasis in this re-
port will be on the development of some practical results on the application of
M—estlmates to robust filtering and smoothing and the evaluation of these techniques
for real and simulated tracking data.

The 14—estimates for regression are discussed extensively in [1), [2], [4)
and [5]. The following description provides a brief introduction to these robust
regression estimates. Given scaler observations Yj~ i—l ,n of the linear model

,

y1 = X 19 + e 1, (1)

_ _  

:i~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



i~iere is a row vector of knows Iis~ pendent variables and e1 Is a random
error term. We ~~nt to estImate the p-vector, e. The N-estImate of e ~1niN1zes

~ 
p ((.y — X 1e)/s ) , (2)

jol

~iere p ( )  is a specified function and s Is a robust measure of the dispersion
of the resi k ls, y1-X1e. Ninte~zIng (2) by differentiating with respect to
o leads to

~ x~ •(&i- x 1~ Is) ~o (3)
Ii

where +(.) is the~~ rivat1ve of p(-) ande is the M-estimate of e. (3) is the
analog of the normal equations In least squares regression.

Rather than specifying the function p. N-estimates are usunIly described
by specifying the function 

~~
. Several • functions have been proposed in the

literature. These ~ functions may be grouped Into t~~ classes, the redescending
type and the non-redescending type. The original • function proposed by Huber

• is of tie non—redescending type and is given by

x IxI~a
• •(x)= 

— (4)
a.s~i(x) Ixi a

-a

Huber *

2
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An example of the redescending ~
p is furnished by the i~ function proposed by

Hampel [6] . The Hampel ip is given by

x ix I<a

a sgn(x) a< IxIcb

ip (x) — a fx—c sgn(x)\ b< Ix Icc (5)
t b-c /

0 IxI>c

-c -b -a 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Hampel *

The Hampel ii with breakpoints a,b,c, which we sometimes denote by Ha(a ,b,c),
is the only * function we will consider in this report. It is a very versatile
function which can be made to take several shapes depending on the choice of the
breakpolngs. Besides using distinct breakpoints a,b,c, we also find the col-

- lapsed Hanipel ti ’s, Ha(a,a,a) and Ha(a ,b,b) to be useful in filtering.
Since (3) is nonlinear, e must be computed iteratively. A simple but highly

effective method has been developed for the iterative solution of (3). This
method Is merely an Iterative application of a weighted least squares algorithm,
[2] , [5] , and [73 . Starting at an arbitrary point in the iteration sequence
~{k) , ~{k4 l} is computed by

= (
~ ~~ x~x.i

’

)~
1 

i~l 
w~~

1 4y1 (6)

3
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(6) is easily recognized as the solution of a weighted least squares problem
with weights ~~~~~~~~ The weights are computed iteratively by

ii ((~v~ 
— xj~

{k} /sk (7)
— X

~
e
~~

)/sk

A coninon dispersion measure Sk is

= median~r~~~ /
‘
.6745 (8)

i=l ,n

where ~~~ = y1 (9)

We will have occasion to apply this method of iterative weighted least squares
to smoothing.

If the probability density function p of the measurement errors e1 is re-
lated to ii’ by p’/p=—*, then the resulting M—estimate is maximum likel ihood. If
outliers are present in the observations, the probability density function should
have heavier tails than the usual Gaussian density. For any ~‘ function, we call

a pseudo density. In the case of the Huber ~j , the pseudo density is an
acceptable density having rather heavy tails. A plot of e~ for *=Hu(l), the
Huber * function with breakpoint a=l , is given in Fig. 1. For a Hampel 4’ function,
Ha(a ,b,c) the tails are so heavy that e~ is no longer a proper density function.
A plot of e~ for ip—Ha(l ,2,3) is given in Fig. 2. Al though the pseudo density may
not be a proper probability density function, we derive some filters and smothers
in some of the conventional ways, e.g., conditional mean and maximizing the posterior
density, with the probability densities of the measurement errors replaced by pseudo
densities.



pr_ • • - • -- - -  - - -- • - - - -~ -= --

S .. — — / \ — — —

P:tupo ~cHStTY £XP (—rho ) Fol kU( 2) . I .

.~ • 4 ) .  4 . ’  4 .

.5 . . 4      . — .

.3 • 4 i 4 • — ~~ — — — — — — 

— - - 
‘ ‘ ‘ 

— 

— ——iS. 4.S—S.S —7.S —6.S 4.I—4.S —3 .S— 2 .5—z .I 3.3 1.1 2.S 3.3 4.5 5.1 ~ .S 1.3 5.5 ~.I 15.0

1.I i ! ! ! !  - — - - -  

• 

.1 
• . 

PSEUX DEJSSIIY ~~~~ IIA~~J.3) 
:

.7 - : 

.6 , 4 

.5 - - •~~~• 

.4 • • •  

.3 . 

.2 —  ~ - ~ . ~ 

I * ) * ) I 1 4 4

S..
-1S.l—~ .I—S.S —?.S —6.S —$ .S—4 .S—3.I —2 .S— 2.S 3.3 1.5 2.0 3.0 4.3 5.3 6.3 1.0 0.5 ~.S u . s

5 

-—

~

- -  _ _ _ _



I
II. APPROXIMATE NON-GAUSSIAN FILTERS

Assume that the state of a process is given by the linear model

x(k+l ) = o(k+l, k) x(k) + u(k), (10)

where the state vector x(k) of the process is an rn-vector, u(k) is a Gaussian
state noise vector wi th zero mean and covariance Q(k). ,(k+l, k) is an rnxrn
transition matrix. Let scalar observations of the process be given by

z(k) = H(k)x(k) + v(k),

where H(k) is a row vector and v(k) is a measurement noi se error which may be
contaminated by outliers.

Recursive filters have been derived in several ways. For example, Sherman
[81 has shown that for a wide variety of loss functions and a wide variety of
distributions underlying the observations the conditional mean of the posterior
distribution is a minimum variance estimate. If we apply this idea to the filtering
case, we arrive at a minimum variance filter. Another method of recursive filter
derivation is by maximizing the posterior distribution from which we obtain the
NAP estimates. In either case we will work with the conditional probability
density function p(x(k)~Zk), where denotes the set of observations, ={ z(l), z(2), —-- , z(k)} . We will derive robust filters by both the conditional
mean and MAP estimates.

Using Bayes rule the posterior conditional density p(x(k)IZk) can be
written as

- p(x(k)Izk) p(z(k)Ix(k)) p(x(k)(Zk~~) (11)
p(z(k)IZk~~)

In order to approximate the conditional mean E[x(k)(Zk] of (11), we assume that
p(x(k)IZ~~

’) is Gaussian and procede as in Masreliez [9].

x(k~k) = E{ x ( k ) IZ k] = p~~(z(k)IZ~~ ) f x(k)p(x(k)lZk_l )p(z(k)Ix(k))dx
J (12)
RTh

6
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k iLet x ( k lk— l ) be the mean of p(x(k)IZ ) and let P(klk—l ) be its covarlance.
Adding and subtracting x(klk— 1 ) to (12) gives

~(klk) = ~(k~k-l) + p~~(z (k) IZ~~ ) f (x(k) - (klk-l)) p(x (k)~Z~~ )p(z (k) Ix (k)) dx
Rm (13)

Assuming p(x(k)IZ~~ ) to be Gaussian, we can write

(x(k) — (klk_l)p(x(k)Iz
k_l
) = p(k Ik l) a p(x(k)IZ’~

1) (14)
ax(k)

Then we can rewrite (13) as

~(kIk) = (klk—l ) — p
_l
(z(k)IZ

k_ I
)P(klk_ l ) ( I a p (x (k)IZk~~)1 p(z(k)Ix(k)) dx

J ~ax(k) I
Rm (15)

Integrating (15) by parts,

~(k~k) = (klk—l ) + p~ (z(k)IZ
k
~ )P(klk— 1 ) f p(x(k)IZk~~) a p(z(k)Ix(k)) dx

J ax(k)
Rm (16)

Using a p(z(k)Ix(k)) = _HT(k)_ a p(z(k)Ix(k)) (17)
ax(k) az(k)

in (16) we obtain

x(klk) = x(klk—l ) — p~~(z(k)tZ
k_ I

)P(kIk_l)HT(k) ~ r p (x(k)IZk~~)p(z(k)Ix(k)) dx
az(k) ~ (18)

Using p(x(k)IZk~~)p(z(k)Ix(k)) = p (x (k) , z(k) IZ k
~~), (18) become s

x (klk) = 
~(kIk—1 ) + P(klk_1)HT(k)g(z(k)) (19)

where g(z(k)) is the scalar

g(z(k)) = —p~~(z(k)IZ~~
’) a p(z(k)IZ’)

~~ (20)
az(k)

7



(19) and (20) were derived by Mareliez In [9] for approximating the minimum
variance filter when measurement noise is non-Gaussian. In order to complete
the speci fi cation of this approximate filter, it is necessary to deri ve an

expression for the conditional second moment,

P(k lk) = E[ (x ( k )  — x ( kf k) )  (x(k) — x (k lk)) T

An expression for P(k~k) is derived similar to the derivation for x(klk). This
derivation is outlined below.

• P(k~k) = E{ (x (k )  - x(k~k—1)) (x(k) - x (k lk_ l)) T IZ k 1
J (21)

— ((kjk) — x(klk—1)) (x(k) — x(klk_1))T

Let S(k) = E{ (x(k) - x(klk—l)) (x(k) — x(klk_l))hIZ
k 

j. Then using (11)

S(k) = p~~(z( k)~Z~~ ) f (x(k) - (kjk-1)) (x(k) - x(kIk~1))Tp(x(k)IZ~~ )
Rm (22)

p(z(k)Ix(k)) dx

Assuming p (x( k)~Z~~
1 ) Gauss ian, we use (14) and Integrate by parts twice to

obtain,

S(k) = P(klk— 1 ) + P(klk_l)HT(k) Jp
_
z(k)IZ~~

1 )a 2p(z(k Z k_1 ) H(k)P(klk—1)
[ az(k) (23)

Combining (23) with (21) and (19) gives

P(klk) = P(klk—l ) — P(klk_1)HT(k)G(z(k)) H(k)P(klk—l) (24)

where
G(z(k)) ag(z(k)) (25)

az(k)

8
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A second method for approximate non—Gaussia n filtering is the marginal
maximum likelihood filter. This filter has also been called the maximum a
posteriori or MAP filter. In this case we find the estimate x(k~k) which maxi-
mizes (11). Maximizing (11) is equivalent to minimizing —Log p(x(k)IZk). Thus,
the MAP estimate minimizes

L(x(k ) ) = —log p(x(k)IZ~~
’) — log p(z(k)lx(k)) - (26)

H If we assume p(x(k),Z~~ ) is Gaussian with mean x(klk—l ) and covariance P(klk—l),
(26) becomes

L(x(k)) = 1 ( x(k) — x (ktk_1))T P 1 (klk—l ) (x(k) — x(klk—l))— log p(z(k)Ix(k))

(27)

Minimizing (27) by setting aL(x(k)) = 0 gives
ax(kJ

x (klk) = x(kjk—1) - P(klk_l)HT(k) a log p(z(k)Ix(klk)) (28)
az(k)

The MAP filter formulation does not provide estimates of any of the moments of
the density p(x(k)IZk) but only the mode of the density. Thus, in order to con-
tinue the MAP filter from point to point, propagation of the first two moments
of p(x(k)~Z

1
~) in time must be provided by a different formulation. In other words

the computation of the MAP estimate x( k+1 k+1) requires knowledge of the moments
x(k+1~k) and P(k+llk) of p(x(k+l)IZ

k) which are not availabl e from the MAP formu-
latlon. We compute values of the moments x(k+llk) and P(k+lIk) from the conditional
mean formulation given previously and consider the MAP estimate of (28) to be a
correction to the conditional mean.

9
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III. ROBUST CONDITIONAL MEAN FILTER

We apply (19), (20), and (24 ) to derive a robust filter based on the [

N-estimates. Given a 1~ function for an N-estimate, we replace the density
p(z(k)IZ

k_
~) in (20) by the pseudo density to obtain a robust filter. Thus

we use p(z(k)lZ~~
’) = e~ where ~ is the derivative of p. With this substitution

the filter estimate of (19) becomes

~(kIk) = (klk-1 ) + p (k(k-l)KT(k) ~ (z()~ - H(k)x(klk-1)~ (29)
Sk k. 5k I

The equation for the second moment given by (24) becomes

P(klk) = P(klk—l ) — (ii” rik) /5k2
’
~ 

P(klk_l)HT(k)H(k)P(klk_l), (30)
S
k /  /

where tb ’ is the derivative of * and r(k)=z(k)—H(k)x(k~k—1) is the predicted re-
sidual . The filter equations are completed by the equations for the predicted
moments,

x(k+lIk) •(k+l,k)x(klk) (31)

P(k+lIk) = s(k+1,k)P(klk),T (k+1,k) + Q(k) (32)

In order to insure the robustness of the filter of (29)-(32), the dispersion
of the predicted residuals must be specified so that it is insensitive to

outliers. We use the MAD estimate of 5k computed from past residuals as

= median Jz(k _j )_HT(k_j) (k_j ,k_ J_ 1) I 
,
/‘.6745 (33)

j—0,N—l 
-

where N is a suitably chosen integer. The robust conditional mean filter does
not require iteration as was required for the N-estimates of regression. In
this sense the conditional mean filter corresponds to the one step N—estimates
described by Bickel [9].

10
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IV. ROBUST MAP FILTER

• As discussed previously the Non—Gaussian MAP filter merely provides a
correction to the conditional mean filter. In the following we let x (klk) denote
the MAP estimate and ~(kIk) the approximate mean of p(x(k)IZk). Given a *
function for an N—estimate, we replace the density p(z(k)1 (klk)) in (28) by the
pseudo density to obtain the robust MAP estimate. Thus, we use p(z(k)Ix(klk)) e~
where q is the derivative of p. With this substitution the MAP estimate of (28)
becomes

~(kIk) = i(klk—l ) + P(klk—l)HT(k) *j
’z(k) - H(k)x(klk)’~ (34)

Sk Sk J
To complete the description of this robust filter we use the conditional moments

~(k+l~k) .(k+l,kY~(k~k) (
~~

)

~(kfk) = 
~ (k Ik-l ) + P(kIk~lJH

T(k) 4’ (z()~ - H(k)i(kIk-1)~ (36)
/

end

P(k)k) = P(k~k-l) - (*
‘ rfk) ~ p (kIk~l)HT(k)H(k)p(k,k~l) (37)

~
k I

where r(k) = z(k) - H(k)
~(kIk— 1 )

also P(k+llk) ,(k+1,k)P(klk),T(k÷1 ,k) + Q(k) (38)

Again we use the MAD estimate on past residuals

median Iz(k—j)—H (k—J )i(k—i l k—j)I / .6745 (39)
j—O,N—1 /

Note that the robust MAP estimate specified by (34) requires iteration for
solution since x (klk) appears nonlinearly on the right hand side of (34). Several
simple methods for iteration are readily apparent. The first method is to iterate

11
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(a)
(34) directly. Let x(k~k) be an arbitrary point in the iteration sequence-(0) - I
and let x(klk) ~(k k-i). Then we iterate (34) as - -

(cx+l) . (cz)
x(k~k) = ~(k Ik—l ) + P(klk_1)HT(k) ip(Z(k) — H(k)x(klk)\ (40)

Sk Sk 1

In this case we can replace (35) by

~(1)i(k+lIk) = •(k+1,k)x (k l k )  (41 )

Another simple method for iteratively solving (34) is similar to the iterative
wei9hted least squares method used to solve the robust regression equations. If

• (aj
x(klk) Is an arbitrary point in the iteration sequence, this method solves (34)
iteratively as

,. (a+l)
x(klk) = ~(k I k—1 ) + ~~~ P~~ (k) HT(k) (z(k) - H(k)~(kIk—l)), (42)

I ~(0)where W~
’
~ is a scalar weight, O<W~’~<l and x (klk)—i(klk—l)

Iz(k) — H(k)x(klk)~• ( ‘  *~~ S
wr’= \ k / (43)

(a)
z(k) — H(k)x(klk)

and
1~~~~~ I i  W(u) r

P~a1(k) = IP ’ (klk—l ) + k H1(k)H(k) I (44)
[ 

Sk2 J
The filter correction provided by (34) to the conditional mean filter can be
quite sizeable. A change to the prediction equation which uses x(klk) on the

right hand of (47) rather than x~k~k) might be a desirable in some applications.

_ _ _ _ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



- -
~~~~~~~~ -

- - - r~~~~~~~--- - - - --~--
• _ 

~~~~_. z_-- --— ~
-—

~

V. APPROXIMAT E NON-GAUSSIAN SMOOTHING

in the following some robust fixed lag smoothing equations are derived
in a similar manner to the derivation of the robust filter equations, i.e.,
using the conditional mean and MAP formulations. In fixed lag smoothing an
estimate of the state x(k) of the system described by (10) and (11) is desired
using the measurements z(1), z(2), ——— , z(k), z(k+1), —— — , z(k+N). Thus, there
is a lag of N points in obtaining this smoothed state estimate. Let ~Z

k
~ =

{ z(k+l), z(k+2), ——-, z(k+N) } . Then = zku~z
k4N. The posterior conditional

desnity p(x(k)IZ ) is given by

p (x(k)IZ~~ ) = p(~Z~~ Ix(k)) p(x(k)IZk) (45)
p(~Z~~ Izk)

— We assume that the density p (x(k)JZk) is Gaussian and procede as before to
obtain the conditional mean, x(k~k+N) = E[ x(k)IZ

k
~ J.

The conditional mean is given by

~(kIk+N ) = p~~(~Z~
I
~ IZk) f x(k) p(

~Z~~
’
~Ix(k)) p(x(k))Z

k) dx(k) (46)

Rm

Adding and subtracting x(klk) to (46) and assuming that p(x(k)lZk) is Gaussian
gives

~(kJk+N) = ~( k J k )  — p
_l
(~Z

k4N
IZk) P(klk)f

Rm (47)

[ a p(x(k)IZk) p(~Zk4N Ix (k)) dx(k)

where P(k~k) Is the covariance of p(x(k)IZ
k). Integrating by parts

~(kIk+N) = x(klk) + p
_l
(ozk+N Izk) P( k~k) ( I a p(~Z~

’
~ Ix(k))1 p (x(kflZk) dx(k)

I I ax(kJ
Rm L J (48)

- 

.,
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Assuming statistical independence of the observations

N
= n p(z(k+j)Ix(k)) (49)j =l

Then

N
a p(~Zk Ix (k)) = 

~ Q.  (2
~~

1
~i) x(k)) (50)ax(kJ j—l ~ ax(k

where

Q • 
11 p(z(k+1)Ix(k)) (51)

J i~•l1
Also,

ap(z(k+j)Ix(k)) = —sT(t k+ tk) H
T(k+j) ap(z(k+4)Ix(k)) (52)ax(k) az(k+J)

Substituting (49)— (52) in (48)

x(k~k+N) x(k~k) + p
_l
(~z

k+N Izk) P(klk) 
~ 

sT(tk+J tk) (53)
j=l

HT (k+j ) a I p(~Z~~~J x ( k ) )p ( x (k ) l Z k ) dx(k)
az(k+j)

But

~~~~~~~~~~~~~~~~ = p(~Z~~ , x(k),Z
k) (54)

Substituting (54) into (53) yields

x(k~k+N) = (klk) — P(k~k) ~ ~
T(tk.f 4 tk) HT(k+j) p~~(2(k+j)~~k) ap(z(k+j))zk)jcl 

~~
‘ az(k+j)

(55)

14 
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The filtered estimate x(klk) and P(klk) are given by (19) and (24).

A slightly different robust fixed lag smother is obtained if, instead
of finding the conditional mean of p(x(k)IZk4~), we compute the mode of
p(x(k)IZk~~). We will call this method the marginal maximum likel ihood or
the MAP formulation of the robust smother. This estimate maximizes (45) or
equivalently minimizes

L(x(k)) = —log p(~Z
k
~~Ix(k)) — log p(x(k)Izk) (56)

Assuming that p(x(k)IZk) is Gaussian with mean x(klk) and covariance P(klk)
(56) becomes,

L(x(k)) = 1/2 (x(k) — (klk))T P~~(ktk) (x(k) — ~(kIk)) — log p(~Z
IC
~~Jx(k)) (57)

Minimizing (57) by setting aL(x(k)) = 0 gives
ax(k)

x(klk+N) = x ( kj k )  + P(klk) p 1(~Z~
’
~ Ix(k)) ap(~Z~~

1h Ix(k)) (58)
ax(k)

Assuming statistical independence of the observations, we use (49) and (52)
In (58) to obtain

N
x(klk+N) = x(klk) — P(klk) ~ •

T(~ tk) HT(k+j) p~~(z(k+j)Ix(kIk+N)) (59)
3=1

~p(z(k+i)Ix(k)k+N ))
a~(k(k+N)

x(klk) and P(klk) are obtained via (19) and (24). The MAP formulati on of (59)
can be viewed as a correction to the conditional mean formulation of (55). Since
x(klk+N) appears nonlinearly on the right hand side of (59), the solution of (59)
will require iteration.

15



VI. ROBUST CONDITIONAL MEAN SMOOTHING

In order to obtain a robust fixed lag smother via the conditional mean

formulation, we replace the densities, p(z(k+j)IZk) in (55) by pseudo den-

sities. Thus, given a ~ function for an N—estimate, we use p(z(k+j),Z
k) = e~~

where ~
p is the derivative of p. With this substitution the robust smoothing

equation of (55) becomes
N T , .,

x(k(k+N) = x(klk) + P(klk) ~ • ~tJ~4j, t~~j H ~k+j
5k+j

(60)

(z(k+j) - H(k+j) •(tk+j tk) ~(ktk)\
Sk+j I

No iteration Is required for the computation in (60) so that this estimate

corresponds to the one step N—estimate.

In order to insure the robustness of the estimate in (60), it is necessary

that 5k+j in (60) be a_ robust measure of dispersion of the residuals, r(k+j) =
z(k+j) — H

~
(tk+j t.) x(klk). Several alternatives are possible for computing

depending ~n the assumptions made about the statistics of the residuals.
The simplest method for computing 

~k+j 
is to assume it Is independent of 3. In

this case we can use the same estimate (39) as the filter. Another possible es-
timate when assuming s + 

to be independent of 3 is

= 5k = 
r~

i
~
n
1
lz(k+i) - H(k+3) •(tk_l+j, tk l ) (k-l l k-l+N)l /6745 (61)

If an estimate 5k+j is required for each 3, then values of the forward resi-
duals must be saved for past values of k. In this case we might use

5k+3 ~~ i~nlz(k-t+i) 
- H(k-L+j) •(tk4+j, tk~~

) (k-ZI k-t+N)l /.6745 (62)

where Q is a suitable integer.

A 16 
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VII. ROBUST MAP SMOOTHING

To obtain a Robust fixed lag smoother from the MAP smoothing formulation
of (59), the densities p(z(k+j)IZk) are replaced by pseudo densities,
p(z(k+j)IZk) = e~~, where the derivative of p Is the influence function *
for an N—estimate. Wi th this substitution (59) is

N T,
x(k~k+N) = x(k~k) + P(klk) ~ ~~~~ tki H t k+j

j1 5k+j

(z(k+i) — H(k+i) •(tk+j, tk) x(klk+N)) (63)
‘I 

5k+j

Again 5k+j is a robust measure of dispersion of the residuals, r(k+j) = z(k+j) -
H(k+j) •(tk+. tk) x(klk+N). Since x(klk+N) appears nonl inearly on the right
hand side of

3
~63), iteration is required for its solution. The most obvious

method is to iterate (63) in its present form, i.e., to replace x(klk+N) on the

• right hand side of (63) by x~
”
~(kIk +N) and x(klk+N) on the left side of (63) by

• 

- x~~~~(kIk+N). This iteration is generally unstable and therefore unuseable.
A much better iteration procedure for (63) is to use weights In a manner simi-
lar to the Iterated weighted least squares of (6) and (7) used to obtain the
M—estimates of regression. Using this procedure the iterative solution of (63)
is defined by

x(klk) + p(a)(k ) ~ ~~~ ~~~~~ tk) HT(k+i)
3=1 

~k~j

(z(k+j ) - H(k+j) •(tk+ . tk) x(klk)) (64)
3,

where
N (a) -l

P(a)(k) = 
[P

_1
k1k + 

i
l
l 

~~ •
T(t k+j t k ) HT ( k+i)H(k+i) •(t k+j , tk)l (65)

17
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and

- H(k+j)e (tk+. tk) 
;(a)

(klk+N)\

= 
Sk+j 

“ 1 (66)
z(k+3) — H(k+i)$ (tk+j, tk) x a)

(klk+N)

tk+j

_ (O) *

The Iteration starts with x(klk+N) = x (klk). The filtered quantities x (klk)
and P(klk) are obtained from (29) and (30). The iteration specified by (64)-(66 )
usuall y converges very rapidly, most often in two or three cycles.

18
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VIII. EVALUATIO(4 OF ROBUST FILTERIUG

Eva l ua tion of the robus t f i lte r i ng me thods described here has been done
wi th  a view toward eventual application to trajectory estimation. Emphasis in
the evaluation is on tn~ use of simulated rather than real trajectory data. This
allows a quanti tative determination of any advantages in the use of robust filter-
ing in the presence of outliers and also any loss in efficiency using robust meth-
ods when no outliers are present. The simulated trajectory is that of a constant
velocity, leve l flying aircraft. The filter model assumes the trajectory to have
constant acceleration in three cartesian coordinates. Let x, y, z be the Eas t,
North , and Up components of trajectory position. We assume that the dynamic
model for each of the coordinates is given by

+ cri r ~ ~~27] ~a(k51 ro
1x2 (k + 1)I = 10 1 

~ 
1x2(k) I + I°

Lx3k + ijJ 0 1 J k3( kjJ LI(k) (67)

where t~= tk+l — tk so that x1 (k), x2 (k), and x3(k) are position , velocity, and

accelera tion componen ts, respectively. w(k) is a zero mean Gaussian acceleration
state noise with variance q. The filter observations, z(k) are scalar positions
corruptea by addi tive noise. -

z(k) = Iix(k) + v(k) (6E~)

with H = [1 0 Oj . The measurement noise v(k) is Gaussian with covaria~nce R(L).
Two di fferent methods are used to generate outliers in the observations. One

method is to choose the variance R(k) of the noise v(k) as

R1(k) if no outl ier
R(k) =

R2(k) if outlier present (69)

with R2(k) >> R1(k). In this case the mean of the measurement noise is zero.
The second method used to generate outliers in the observations is to choose
the meanp(k) of the observation noise as

19
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0 if no outlier

p 1(k)  if outlier present (70)

In this case the variance of the observation noise is R~(k). In either method

we must decide whether or not an outlier is to be present in the data at each time

tks We do this by using a two state fdarkov chain. Let i denote the state of the

Markov chain. i = 1 is the state of no outlier present and I = 2 is the state if
an outlier is present in  the data. Let P~~(k) be the probability of a transition

from state i to state j in the interval (tk_l, t~). The transition probabilities

are chosen to provide a given percentage of outliers and desired run lengths of
outl iers in the observations. The transitions between states are realized by use
of a pseudo random number generator.

The constant velocity trajectory used for evaluation is given by

x(tk+l) = x(tk) + 
~
(tk+l — tk)

y(tk+l ) = y(t k ) + ,
~
(t k+1 — tk)

z(tk+l ) = z( tk) + 
~
(t k+1 — tk) (71)

wi th ~ = —Li5Oft/sec, = —252ft/sec, and ~ = 0. A sampling interva l of tk+l — tk =

.05 Sec ~ias used, a monte carlo evaluation of the robust filter is done by comput—

ing some statistics of the filtering errors over U filtcr v uris . Let x j ( tk),

yi(tk), and z j (tk) denote the fi - ~ered posi tion esvimates e~t time tk for the

run and let 
~i (tk) = xl (t k) — x(t~), 

~j (t k ) y1(t~) 
— y(tk), and ‘

~j
(tk)

zj(tk) - z(tk) denote the errors in the filtered positions for the i~~ fi lter run

at time tk• Also, let 
~
di (tk) = 

~j (t k ) - k, 
~j

(t k) = 
~j (t k ) — j ,  and ij(t k) =

A A

~j (tk ) - ~ denote errors in filtered velocity estimates and xj(tk) = xj(tk) —

yj(t k) • y 1(t 1~) - y ,  and zj(tk) = zj(tk) — z be the errors in  the filtered acceler—

ations for the l.~~ run at time tkl We evaluate only the RSS posi tion, velocity,

20
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and acceleration estimates,

2 2 1/
Ri (tk) = (

~ 
(tk) + 3;~ (tk) + zi (tk) )

Ai (tk) = (‘~~2~~~~ + 
‘~‘ 2  

(tk) + Zi (tk)) 
/2

1/2
R
~ 
(tk) = ~ x,~ (tk) + y1 (tk) + Z1 (tk) ) (72)

We compute the sample averages of the RSS errors defined in (72).

N
~
(tk) = z R.(tk)i=l 1

— N
= 

~ 1=1 
Ai (tk)

— N . .
R(tk) = z R.(tk) (73)

1=1 1

In order to reduce the evaluation of the robust filter to the comparison
of only a few numbers, we compute the time average of estimation errors in
(73)

=

R = * E 
~
(tk
)

k=1

= N —
A =~~ z A (tk)k= 1

R _ IZ R(t ) (74)
Nk...l k

where N Is the total number of filtered points. Unless otherwise specified,

N = 25 , 1R1(k) = 20 ft. , P12(k) = .05, and P21(k) = .5. These transition
probabilities for the Markov chain provide an outlier contamination of about
9% and an average outlier run length of three. A state noise covarlance,
q = 5, was used for all filter runs. In all runs of the robust filter the
measurement noise covar iance, R1(k), was unknown to the filter. The residual

21 L
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variance, which is the only quantity required by the filter which invol ves
was estimated using the MAD estimate of (33).

Figure 3 compares the average RSS position errors for the two robust
bilters using the Ham-pel • functions Ha (4

~ 
4, 4) and Ha (2

~ 
3, 4). Figure

4 gives the RSS velocity error comparison for the same two filters. Also
indi cated in Figures 3 and 4 are the ideal RSS error values which were
obtained using an ordinary Kalman filter wi th no outliers present and using
a known measurement covariance, R1(k) = 400. We note from Figures 3 and
4 tha t neither of the robust filters lose much efficiency from the ideal
values when no outliers are present. In Figures 3 and 4 the magnitude of

the outlier contamination is p1(k) = C • ,‘R1(k) for various values of C.
The error curves in Figures 3 and 4 behave as expected. Since outliers
small in relation to the measurement noise are hardest to detect, the
error curve rises sharply. Outliers large relative to the measurement
noise are easy to detect so that the error curve returns to zero for large
outliers. We see from Figures 3 and 4 that Ha(2s 3, 4) has a significantly

smaller estimation error than Ha(4~ 
4, 4). Except for the way In which

the di spersion of the residuals is measured, i.e., the MAD estimate of (33),
Ha(4~ 

4, 4) is a conventional way of handling outliers in a Ka lma n filter
application. Using Ha(4~ 

4, 4) any observation whose predicted residual

is greater than 4 • Sk is not processed and any observation whose predicted

residual is less than 4 Sk is processed as an ordinary Kalman filter ob-

servation.
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We can reduce the RSS estimation errors for the robust filter still farther
by pulling in the brea kpoints of the Itampel 

~ function. Figures 5 and 6
— compare the RSS position and velocity estimation errors for the filters

Ha (2
~ 

3, 4) and l4
~

O, 2, 3). We note that H
a

(l
~ 

2, 3) results In a con-

siderable decrease In estimation error from Ha(2~ 
3, 4).

16
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The Iterated fi lter or W~P filter given in (34) — (38) was evaluated
under the same conditi ons as the condit ional mean filter . Comparison of
the averag e RSS estimation errors for the conditional mean and MAP filters
showed no discernible differences. Because the MAP filter offers no improve—
ment over the conditiona l mean filter and because the conditional mean filter
Is the simpl er of the two robust filters , we will not give any further eva)—
uation of ~ the MAP filter.

The robust filter was also evalua ted with respect to its ability to
adapt to changes in measurement noise variance. Using the same simulated
traj ectory as before , the measurement noise standa rd dev iation was 1R1(k) —

20 ft for 0 ~ t ~ 25 sec., ,‘R1(k) 100 ft for 25 c 
~ ~ 40 sec., and

v’R1(k) • 50 ft for 40 c t ~ 50 sec. Figures 7 and 8 compa re the RSS posl-
tion and velocity estimation errors for the filters usin g Ha(l~ 2, 3) and

Ha(3
~ 
3, 3) for the above measurement noise variations. Again, we find

tha t the robust fi lter Ha(l~ 2, 3) has a considerably mealIer mean square

error In the presence of out liers than the more conventional way of handi-
ing outliers Implemented in H

~
(3, ~

Figure 7
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A Monte Car lo evaluation of the robust, conditional mean smoother was
performed using the same s1~i1ated trajectory as used for the filter eval-
uation. A smoothing Interval of one sec. or 20 samples was used. The Monte
Carlo sample size for the smoother evaluation Is N — 10. The measurement
noise standard deviation was increased so that 1R1(I~J — 50 ft. The outlier
contamination is the same as for filter evaluation, i.e., a contamination

of 8.8% and an average outlier run length of three. Figures 9 and 10 corn-
pare the average RSS position and average RSS velocity errors for the two
smoothers with Ha(2~ ~ 

4) and Ha(4~ 
4, 4) for various levels of outliers.

As In the filtering case we see that Ha (2
~ 
3, 4) results in a significant

decrease in estimation error from the smoother using the more conventional
4, 4) method of handling outliers.
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